COMMUNICATION ENGINEERING

Mutual Information

MUTUAL INFORMATION

- Prior to the reception of a message the state of knowledge at the receiver about the transmitted signal x_i (channel input) is the probability p(x_i)
- After the reception and selection of symbol y_k (channel output) the state of knowledge about x_i is the conditional probability p(x_i | y_k)
- > Before y_k is received uncertainty is $-\log p(x_j)$
- > After y_k is received uncertainty is $-\log p(x_i | y_k)$
- The information gained about x_j by the reception of y_k is the net reduction in its uncertainty known as MUTUAL INFORMATION I(x_j, y_k) ie. uncertainty about the channel input that is resolved by observing channel out put

MUTUAL INFORMATION

➤ I(x_j, y_k) =initial uncertainty -final uncertainty = -log p(x_j) -(- log p(x_j | y_k))) I(x_j, y_k) = log (p(x_j | y_k)/ p(x_j)) Also, = log (p(y_k | x_j)/ p(y_k)) I(x_j, y_k) = I (y_k, x_j)

Average of mutual information is the entropy corresponding to mutual information

$$I(X; Y) = I(x_j, y_k)$$

 \succ I(X;Y) = H(X)-H(X|Y)

= H(Y)-H(Y|X)

= H(X) + H(Y) - H(X,Y)

It is a measure of information transferred through the channel also called transferred information of the channel or trans information of the channel

PROBLEMS

1. A discrete source transmits messages x_1 , x_2 , x_3 with probabilities 0.3,0.4 and 0.4 The source is connected to the channel given in figure. Calculate all the associated entropies and mutual information.

PROBLEMS

2. Find the mutual information of the channel

